Elementos filtrados por fecha: Mayo 2017 - Consultoría Logística
Jueves, 25 Mayo 2017 06:18

LIS-SIL 2017. ¿Casualidad? Lo dudo!

LISIL

El Salón Internacional de la Logística vuelve a contar con LIS-Solutions para aportar su experiencia en el congreso internacional dedicado a la Logística Inteligente.

Aquí debatiremos las últimas tendencias del Big Data aplicado a la logística y al e-commerce, que nos gustaría compartir con vosotros.

  cabecera sil 2017

SMART LOGISTICS

8 DE JUNIO DE 2017   9:30 h -13:00 h.  SALA PRÍNCIPE

ponentes sil 2017 Ecommerce BigData

Para ver programa completo y acreditación:

http://www.silbcn.com/es/actos_jornadas/seccion.php?id=14

Publicado en Empresa

Después de una larga semana en cuanto al mundo del deporte se refiere, volvemos para analizar la vuelta de semifinal de la Champions entre dos de los grandes: Atlético de Madrid - Real Madrid. 

Tras un primer análisis, que puedes encontrar aqui, vamos a realizar la segunda parte, con técnicas de text mining llevadas a cabo por LIS-Solutions, mediante el Software de mineria de datos Knime recogiendo los datos através de Twitter.

 

¿Cuál es el sentimiento predominante?

Bien, como podemos ver en la nube de palabras podemos deducir que algo ha pasado con Karim Benzema, ¿tal vez fuera su increible jugada? y además sacamos como claros ganadores en cuanto a actividad en twitter se refiere a la hinchada merengue pues su color predomina en nuestra nube.

 

 nube palabra atletico real madrid

 

Cuadros de mandos para una mejor visualización

Una vez capturada la información relacionada con el partido, pasamos a mostrarla de manera intuitiva utilizando para ello la herramienta de Qlik (Qlik Sense). Esta herramienta nos permite la creación de cuadros de mandos para optimizar la visualización de los datos recogidos antes.

partido completo

 

En este primer cuadro de mandos podemos ver la actividad a lo largo de todo el partido. Destacar que la gran mayoría de los tweets ocurren al final de cada parte.

En la parte inferior del cuadro de mandos podemos ver un gráfico de bloques en los que se representan las nacionalidades de los usuarios analizados. Siendo China el pais en el que más seguidores del fútbol español existen parece curioso que que no aparezca en la gráfica. No es que el análisis este fallando, la respuesta esta en que allí la red social utilizada es Weibo, no Twitter.

Primera parte

En este segundo cuadro de mandos, podemos ver la actividad de twitter en la primera mitad del derbi madrileño. Se observa una gran cantidad de actividad en los momentos clave del Atlético de Madrid, si bien es cierto que cuando Isco mete el gol del Madrid la actividad en twitter vuelve a crecer equiparandose a los momentos de gloria del Atlético.

Esto ha sido un ejemplo simple con un partido de fútbol, pero las posibilidades son infinitas, ya sea para análisis de mercados, penetración de cierta marca en cierto territorio nacional/internacional o visualizar como miles de personas perciben un tema en concreto.

Publicado en Gestión de Datos

¿En qué puede beneficiar el Big Data al sector textil?

El Big Data nos permite identificar patrones ocultos en los datos, aplicando técnicas avanzadas de análisis de datos se pueden resolver preguntas de negocio del sector textil como:

  • ¿Cómo se va a comportar determinada familia de producto? (bolsos, chaquetas, zapatos)
  • ¿Qué color de bolso se va a llevar la próxima temporada?
  • Predecir la demanda en función del comportamiento de los compradores
  • Podré calcular mis stocks de maniobra y seguridad para satisfacer la demanda
  • ¿Cómo va afectar la meteorología a mis ventas?

Mucha de esta información ya se encuentra en nuestros sistemas, pero… además…! Gracias al Big Data para el sector textil, podremos vincular información aparentemente no relacionada como pueden ser bases de datos meteorológicas, redes sociales, bases de datos abiertas (open data)…

textil tendencias

VER, PREDECIR, AVISAR (Predicción con alarmas)

Con las herramientas y las técnicas adecuadas, el Big Data nos permite:

  • Ver lo que sucede en nuestra empresa, en nuestro entorno. Mucha información ya la tenemos, oculta entre una montaña de datos. El Big Data nos permite hacerla visible.
  • Predecir lo que puede pasar, integrando todas aquellas variables que de manera crucial nos influyen en las estimaciones de nuestros productos textiles.
  • Avisar de anomalías y comportamientos extraños. Monitorizar nuestras actuaciones y descubrir cuando nos estamos saliendo de los parámetros adecuados de forma preventiva.

Todas estas preguntas y muchas más, se pueden contestar mediante análisis de datos con técnicas “Big Data”. El Big Data puede ayudar a resolver muchas preguntas de negocio del sector textil.

Si quieres ver algún ejemplo de proyectos de big data para el sector textil, no dudes en ponerte en contacto con nosotros en Esta dirección de correo electrónico está protegida contra spambots. Usted necesita tener Javascript activado para poder verla.

Publicado en Gestión de Datos

TECNICAS DE TEXT MINING PARA ANALIZAR TWITTER

Hoy traemos al blog un artículo diferente. Y es que, utilizando como hacemos diferentes herramientas analíticas, como KNIME, podemos no solo explorar los datos internos de nuestras compañías, sino también mirar al exterior.

Twitter es un gran recurso si queremos conocer a nuestro entorno. Opiniones, críticas viscerales, halagos (de vez en cuando), … todo ello se concentra en Twitter. Así que, aprovechando que KNIME permite de forma sencilla conectarse a Twitter, decidimos hacer un rápido ejemplo.

EL DERBI A TRAVÉS DE TWITTER.

Lo primero que tenemos que crear, es una API de Twitter. Hay varios sitios donde lo explican (por ejemplo, aquí  https://www.uno-de-piera.com/crear-una-aplicacion-para-twitter/). Con la API de Twitter obtendremos una serie de claves y token, que tendremos que copiar en el nodo de conector de KNIME. 

el nodo de twitter bueno

 

Una vez conectados, empezamos nuestro proceso de extracción y tratamiento de información. Además de las herramientas de minería de texto que KNIME posee, diseñamos aquellas soluciones que necesitamos para el tratamiento ad hoc a nuestro caso de estudio (teniendo en cuenta que muchas de las herramientas de minería de texto están muy bien implementadas para el idioma inglés, siendo de menos utilidad para el castellano).

workflow

 

Como Twitter es muy grande, decidimos basarnos en la lista de Trending Topic para analizar bajo qué hashtag podemos tener más mensajes para analizar. Es por ello que usamos el #Megaderbichampions para nuestro análisis.

Gracias a distintas herramientas de minería de texto, podemos ir tratando nuestros tweets, teniendo siempre como objetivo final la creación de un Tag Cloud: una nube de palabras clavecon las que poder extraer información acerca de nuestro caso de estudio, en este caso, el derbi.

nube de palabras real madrid

Hemos polarizado distintas palabras para una mejor comprensión. A la luz de estos resultados, está claro que el Real Madrid fue el único equipo del partido. Y en concreto, Cristiano Ronaldo, que fue muy comentado en los tweets (sin duda, fue el protagonista del encuentro).

Debido a la variabilidad que puede tener analizar simplemente los tweets, el Tag Cloud nos sirve de guía para hacer una profundización en la información, y tratar de encontrar motivos. Por ejemplo, el hecho de que este fuera el hashtag utilizado por el canal Mega de Atresmedia, crea un sesgo hacia los comentaristas del mismo (en este caso, la etiqueta “petón” nos indica a José Antonio Martín Otín “Petón”, conocido periodista y fan rojiblanco.)

Dos nombres nos resultan curiosos en esta nube: “Messi” y “Benzema”.

¿JUGABAN MESSI Y BENZEMA? 

A partir de los datos de Twitter, decidimos investigar ambos conceptos. 

Los tweets que enlazaban con Messi, al contrario de lo que podíamos suponer al principio (la eterna comparación de quién de los dos es mejor), fueron principalmente tweets de burla, que enlazaban el hecho de que el Barcelona estuviese eliminado de la Champions, y que Messi enseñara su camiseta en el último clásico:

lo de messi

 

En cuanto a Benzema, decidimos seguir el rastro de los tweets, y descubrimos algo curioso.

nube de palabras benzema

Algunas críticas de los seguidores y el bajo rendimiento del jugador en el partido de ayer, hicieron que varios se planteasen las comparaciones con otros delanteros, ¿podría haber jugado Morata?

NECESIDAD DEL ANALISTA PARA UN CONOCIMIENTO MAYOR.

Esto ha sido un pequeño ejemplo, hecho de una manera ágil sobre el partido de ayer. KNIME nos permite llevar a cabo este proceso de minería de texto sobre grandes volúmenes de datos. Podríamos ampliar las capturas, las fuentes de datos, incluso añadir nuevas plataformas de social media. Pero aun con todo, es necesario la supervisión y el “olfato” de un analista, que permita ver dónde flaquea el análisis, dónde indagar más y cómo enriquecer el tratamiento de la información.

 

Publicado en Gestión de Datos